Satellite Symposium

38th Congress of the Italian Society of Hematology
Florence, October 7-10, 2001

von Willebrand’s disease
Satellite Symposium

38th Congress of the Italian Society of Hematology
Florence, October 7-10, 2001

von Willebrand's disease
associate editors

Carlo Brugnara (Boston), Red Cells & Iron, Federico Caligaris Cappio (Torino), Lymphocytes & Immunology, Carmelo Carlo-Stella (Milano), Hematopoiesis & Growth Factors, Francesco Dazzi (London), Myeloproliferative Disorders. Paolo G. Gobbi (Pavia), Lymphoid Neoplasia. Franco Locatelli (Pavia), Pediatric Hematology. Alberto Mantovani (Milano), Leukocytes & Inflammation. Giuseppe Masera (Mozz), Geographic Hematology. Cristina Mecucci (Perugia), Cytogenetics. Pier Giuseppe Pelicci (Milano), Molecular Hematology. Paolo Rebuli (Milano), Transfusion Medicine. Miguel Angel Sanz (Valencia), Myeloid Neoplasia. Franco Locatelli (Pavia), Pediatric Hematology. Alberto Mantovani (Milano), Transplantation & Cell Therapy. Vicente Vicente (Madrid), Hemostasis & Thrombosis

editorial board

Adriano Aguzzi (Zürich), Adrian Alegre Amor (Madrid), Claudio Ansáetse (Seattle), Jeanne E. Anderson (San Antonio), Nancy C. Andrews (Boston), William Arcese (Roma), Andrea Bacigalupo (Genova), Carlo Baldiuni (Pavia), Luz Barbolla (Móstoles-Madrid), Giovanni Barosi (Pavia), Javier Batlle Fourodona (La Coruña), Yves Beguin (Liège), Marie Christine Béné (Vandoeuvre Les Nancy), Andrea Biondi (Mozz), Mario Boccadoro (Torino), Niels Borregaard (Copenhagen), David T. Bowen (Dundee), Ronald Brand (Leiden), Salut Brunet (Barcelona), Ecole Brusamolino (Pavia), Clara Camaschella (Torino), Dario Campana (Memphis), Maria Domenica Cappellini (Milano), Angelo Michele Carella (Genova), Gian Carlo Castaman (Vicenza), Marco Cattaneo (Milano), Zhu Chen (Shanghai), Alan Cohen (Philadelphia), Eulogio Conde Garcia (Santander), Antonio Cuneo (Ferrara), Björn Dahlbäck (Malmö), Riccardo Dalla Favera (New York), Armando D'Angelo (Milano), Elisabetta Dejana (Milano), Jean Delaunay (Le Kremlin-Bicêtre), Consuelo Del Cañizo (Salamanca), Valerio De Stefano (Roma), Joaquin Diaz Mediavilla (Madrid), Francesco Di Raimondo (Catania), Charles Muzon (Oklahoma City), Elihu H. Estey (Houston), Renato Fanin (Udine), José María Fernández Rañada (Madrid), Evarist Felip Frasnedo (Foglia), Sakan Knuutila (Helsinki), Myriam Labopin (Paris), César Lacombe (Paris), Giorgio Lambertenghi Deliliers (Milano), Francesco Lauria (Siena), Mario Lazzarino (Roma), Roberto Lemoli (Bologna), Giuseppe Leone (Roma), Patrick MacPhail (Johannesburg), Ignazio Majolino (Roma), Guglielmo Mariani (Palermo), Estelle Mathéus (London), Roberto Mazzara (Barcelona), Cristina Mecucci (Perugia), Giampiero Merlini (Pavia), Emili Montserrat (Barcelona), José Maria Ribera (Barcelona), Eduardo Rocha (Pamplona), Damiano Rondelli (Bologna), Domenico Russo (Udine), Andrea Rovelli (Bologna), Giovanni Ruzzo (Roma), Mark Salaam (Toronto), J. Michael Schaeffer (Toronto), José Francisco Sanz (Madrid), Hubert Schrezenmeier (Berlin), Mario Segaregn (Genova), Philippe Solé-Celigny (Le Mans), Pieter Sonneveld (Rotterdam), Yoshiaki Sonoda (Kyoto), Yoichi Takaue (Tokyo), José Francisco Tomás (Madrid), Giuseppe Torelli (Modena), Antonio Torres (CORDOB), Andrea Velardi (Perugia), Ana Villegas (Madrid), François Wendling (Villejuif), Soledad Wessner (Barcelona), Pier Luigi Zinzani (Bologna)

official organ of

the Italian Society of Hematology,
the Spanish Association of Hematology and Hemotherapy,
the Italian Society of Experimental Hematology,
the Italian Society of Hemostasis and Thrombosis,
the Italian Society of Pediatric Hematology/Oncology

editor-in-chief

Edoardo Ascari (Pavia)

executive editor

Mario Cazzola (Pavia)

editorial committee

Tiziano Barbui (Bergamo, President of the Italian Society of Hematology)
Ciri Rozman (Barcelona, Representative of the Spanish Association of Hematology and Hemotherapy)
Francesco Lo Coco (Roma, President of the Italian Society of Experimental Hematology)
Francesco Violi (Roma, President of the Italian Society of Hemostasis and Thrombosis)
Giuseppe Basso (Padova, President of the Italian Society of Pediatric Hematology/Oncology)

editorial office

Igor Ebuli Poletti, Paolo Marchetto, Michele Moscatto, Lorella Ripari, Rachel Stenner
editorial policy

Haematologica - Journal of Hematology (ISSN 0390-6078) is owned by the Ferrata Storti Foundation, a non-profit organization created through the efforts of the heirs of Professor Adolfo Ferrata and of Professor Edoardo Storti. The aim of the Ferrata Storti Foundation is to stimulate and promote the study of and research on blood disorders and their treatment in several ways, in particular by supporting and expanding Haematologica. The journal is published monthly in one volume per year and has both a paper version and an online version (Haematologica on Internet, website: http://www.haematologica.it). There are two editions of the print journal: 1) the international edition (fully in English) is published by the Ferrata Storti Foundation, Pavia, Italy; 2) the Spanish edition (the international edition plus selected abstracts in Spanish) is published by Ediciones Doyma, Barcelona, Spain.

The contents of Haematologica are protected by copyright. Papers are accepted for publication with the understanding that their contents, all or in part, have not been published elsewhere, except in abstract form or by express consent of the Editor-in-Chief or the Executive Editor. Further details on transfer of copyright and permission to reproduce parts of published papers are given in Instructions to Authors. Haematologica accepts no responsibility for statements made by contributors or claims made by advertisers.

Editorial correspondence should be addressed to: Haematologica Journal Office, Strada Nuova 134, 27100 Pavia, Italy (Phone: +39-0382-531182 – Fax: +39-0382-27721 – E-mail: office@haematologica.it).

subscription information

International edition
All subscriptions are entered on a calendar-year basis, beginning in January and expiring the following December. Send subscription inquiries to: Haematologica Journal Office, Strada Nuova 134, 27100 Pavia, Italy (Phone: +39-0382-531182. Fax: +39-0382-27721. E-mail: office@haematologica.it). Payment accepted: major credit cards (American Express, VISA and MasterCard), bank transfers and cheques.

Subscription rates, including postage and handling, are reported below. Individual subscriptions are intended for personal use.

<table>
<thead>
<tr>
<th>Rates</th>
<th>Institutional</th>
<th>Personal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>Euro 350</td>
<td>Euro 150</td>
</tr>
<tr>
<td>Rest of World (surface)</td>
<td>Euro 350</td>
<td>Euro 150</td>
</tr>
<tr>
<td>Rest of World (airmail)</td>
<td>Euro 400</td>
<td>Euro 200</td>
</tr>
<tr>
<td>Countries with limited resources</td>
<td>Euro 35</td>
<td>Euro 25</td>
</tr>
<tr>
<td>Haematologica on Internet</td>
<td>worldwide</td>
<td>Free</td>
</tr>
</tbody>
</table>

Spanish print edition
The Spanish print edition circulates in Spain, Portugal, South and Central America. To subscribe to it, please contact: Ediciones Doyma S.A., Travesera de Gracia, 17-21, 08021 Barcelona, Spain (Phone: +34-93-414-5706 – Fax +34-93-414-4911 – E-mail: info@doyma.es).

Change of address
Communications concerning changes of address should be addressed to the Publisher. They should include both old and new addresses and should be accompanied by a mailing label from a recent issue. Allow six weeks for all changes to become effective.

Back issues
Inquiries about single or replacement copies of the journal should be addressed to the Publisher.

Advertisements
Contact the Advertising Manager, Haematologica Journal Office, Strada Nuova 134, 27100 Pavia, Italy (Phone: +39-0382-531182 – Fax: +39-0382-27721 – E-mail: office@haematologica.it).

16 mm microfilm, 35 mm microfilm, 105 mm microfiche and article copies are available through University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, USA.

16 mm microfilm, 35 mm microfilm, 105 mm microfiche and article copies are available through University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, USA.

Whilst every effort is made by the publishers and the editorial board to see that no inaccurate or misleading data, opinion or statement appears in this journal, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advisor concerned. Accordingly, the publishers, the editorial board and their respective employees, officers and agents accept no liability whatsoever for the consequences of any inaccurate or misleading data, opinion or statement. Whilst all due care is taken to ensure that drug doses and other quantities are presented accurately, readers are advised that new methods and techniques involving drug usage, and described within this journal, should only be followed in conjunction with the drug manufacturer’s own published literature.
instructions to authors

For any additional information, the scientific staff of Haematologica can be reached through:

Haematologica, Strada Nuova 134, 27100 Pavia, Italy.
Tel. +39.0382.531182
Fax +39.0382.27721
e-mail: office@haematologica.it
web: http://www.haematologica.it

Haematologica publishes monthly Editorials, Original Papers, Reviews and Scientific Correspondence on subjects regarding experimental, laboratory and clinical hematology. Editorials and Reviews are normally solicited by the Editor, but suitable papers of this type may be submitted for consideration. Appropriate papers are published under the headings Decision Making and Problem Solving and Molecular Basis of Disease.

Review and Action. Submission of a paper implies that neither the article nor any essential part of it has been or will be published or submitted for publication elsewhere before appearing in Haematologica. Each paper submitted for publication is first assigned by the Editor to an appropriate Associate Editor who has knowledge of the field discussed in the manuscript. The first step of manuscript selection takes place entirely inhouse and has two major objectives: a) to establish the article’s appropriateness for Haematologica’s readership; b) to define the manuscript’s priority ranking relative to other manuscripts currently under consideration, since the number of papers that the journal receives is greater than which it can publish. Manuscripts that are considered to be either unsuitable for the journal’s readership or low-priority in comparison with other papers under evaluation will not undergo external in-depth review. Authors of these papers are notified promptly: within about 2 weeks, that their manuscript cannot be accepted for publication. The remaining articles are reviewed by at least two different external referees (second step or classical peer review). After this peer evaluation, the final decision on a paper’s acceptability for publication is made in conjunction by the Associate Editor and one of the Editors, and this decision is then transmitted to the authors.

Conflict of Interest. Policies. Before final acceptance, authors of research papers or reviews will be asked to sign the following conflict of interest statement: Please provide any pertinent information about the authors’ personal or professional situation that might affect or appear to affect your views on the subject. In particular, disclose any financial support by companies interested in products or processes involved in the work described. A note in the printed paper will indicate that the authors have disclosed a potential conflict of interest. Reviewers are regularly asked to sign the following conflict of interest statement: Please indicate whether you have any relationship (personal or professional) or any financial interest that might affect or appear to affect your judgment. Research articles or reviews written by Editorial Board Members are regularly processed by the Editor-in-Chief and/or the Executive Editor.

Time to Publication. Haematologica strives to be a forum for rapid exchange of new observations and ideas in hematology. As such, our objective is to review a paper in 4 weeks and communicate the editorial decision by fax within one month of submission. However, it must be noted that Haematologica strongly encourages authors to send their papers via Internet. Haematologica believes that this is a more reliable way of speeding up publication. Papers sent using our Internet Submission page will be processed in 2-3 weeks and then, if accepted, published immediately on our web site. Papers sent via regular mail or otherwise are expected to require more time to be processed. Detailed instructions for electronic submission are available at http://www.haematologica.it/submission

Submit papers to:
http://www.haematologica.it/submission
or the Editorial Office, Haematologica, Strada Nuova 134, 27100 Pavia, Italy

Manuscript preparation. Manuscripts must be written in English. Manuscripts with inconsistent spelling will be unified by the English Editor. Manuscripts should be prepared according to the Uniform Requirements for Manuscripts Submitted to Biomedical Journals, N Engl J Med 1997; 336:309-15; the most recent version of the Uniform Requirements can be found on the following web site:

With respect to traditional mail submission manuscripts, including tables and figures, should be sent in triplicate to facilitate prompt review. In order to facilitate processing, author(s) should also enclose a 3.5” diskette (MS-DOS or Macintosh) containing the manuscript text; if the paper includes computerized graphs, the diskette should contain these documents as well. Computer programs employed to prepare the above documents should be listed.

Title Page. The first page of the manuscript must contain: (a) title, name and surname of the authors; (b) names of the institution(s) where the research was carried out; (c) a running title of no more than 50 letters; (d) acknowledgments; (e) the name and full postal address of the author to whom correspondence regarding the manuscript as well as requests for abstracts should be sent. To accelerate communication, phone, fax number and e-mail address of the corresponding author should also be included.

Abstract. The second page should carry an informative abstract of no more than 250 words which should be intelligible without reference to the text. Original paper abstracts must be structured as follows: background and objectives, design and methods, results, interpretation and conclusions. After the abstract, add three to five key words. Editorialsshould be concise. No particular format is required for these articles, which should not include a summary.

Original Papers should normally be divided into abstract, introduction, design and methods, results, discussion and references. The section Decision Making and Problem Solving presents papers on health decision science specifically regarding hematologic problems. Suitable papers will also concern those dealing with public health, computer science and cognitive science. This section may also include guidelines for diagnosis and treatment of hematologic disorders and position papers by scientific societies.

Reviews provide a comprehensive overview of issues of current interest. No particular format is required but the text should be preceded by an abstract which should be structured as follows: background and objective, evidence and information sources, state of the art, perspectives. Within review articles, Haematologica gives top priority to papers on molecular hematology to be published in the section Molecular basis of disease; b) papers on clinical problems analyzed according to the methodology typical of Evidence-Based Medicine. Scientific Correspondence should be no longer than 500 words (a word count should be included by the authors), can include one to two figures or tables, and should not contain more than ten strictly relevant references. Letters should have a short abstract (≤ 50 words) as an introductory paragraph, and should be signed by no more than six authors. Correspondence, i.e. comments on articles published in the journal will only appear in our Internet edition. Pictures of particular interest will be published in appropriate spaces.
instructions to authors

For any additional information, the scientific staff of Haematologica can be reached through: Haematologica, Strada Nuova 134, 27100 Pavia, Italy.
Tel. +39.0382.531182
Fax +39.0382.27721
e-mail: office@haematologica.it
web: http://www.haematologica.it

For any additional information, the scientific staff of Haematologica can be reached through:

Haematologica, Strada Nuova 134, 27100 Pavia, Italy.
Tel. +39.0382.531182
Fax +39.0382.27721
e-mail: office@haematologica.it
web: http://www.haematologica.it

Tables and illustrations. Tables and illustrations must be constructed in consideration of the size of the journal and without repetitions. They should be sent in triplicate with each table typed on a separate page, progressively numbered with Arabic numerals and accompanied by a caption in English. All illustrations (graphs, drawings, schemes and photographs) must be progressively numbered with Arabic numerals. In place of original drawings, roentgenograms, or other materials, send sharp glossy black-and-white photoprints, ideally 13 by 18 cm but no larger than 20 by 25 cm. In preparing illustrations, the final base should be considered the width of a single column, i.e. 8 cm (larger illustrations will be accepted only in special cases). Letters and numbers should be large enough to remain legible (> 1 mm) after the figure has been reduced to fit the width of a single column. In preparing composite illustrations, each section should be marked with a small letter in the bottom left corner. Legends for illustrations should be typed and written on a separate page. Authors are also encouraged to submit illustrations as electronic files together with the manuscript text (please, provide what kind of computer and software employed).

Units of measurement. All hematologic and clinical chemistry measurements should be reported in the metric system according to the International System of Units (SI) (Ann Intern Med 1987; 106:114-29). Alternative non-SI units may be given in addition. Authors are required to use the standardized format for abbreviations and units of the International Committee for Standardization in Hematology when expressing blood count results (Haematologica 1991; 76:166).

References should be prepared according to the Vancouver style (for details see: http://www.ama-assn.org/public/peer/wame/uniform.htm or also N Engl J Med 1997; 336:309-15). References must be numbered consecutively in the order in which they are first cited in the text, and they must be identified in the text by Arabic numerals (in parentheses). Journal abbreviations are those of the List of Journals Indexed, printed annually in the January issue of the Index Medicus [this list (about 1.3 Mb) can also be obtained on Internet through the US National Library of Medicine website, at the following worldwide-web address: http://www.nlm.nih.gov/bsd/sid/sidj.html].

List all authors when six or fewer; when seven or more, list only the first three and add et al. Examples of correct forms of references follow (please note that the last page must be indicated with the minimum number of digits):

Journals (standard journal article,1-2 corporate author,3 no author given,4 journal supplement5):

Books and other monographs (personal authors,6 chapter in a book,7 published proceeding paper,8 abstract book,9 monograph in a series,10 agency publication11):

References to Personal Communications and Unpublished Data should be incorporated in the text and not placed under the numbered References. Please type the references exactly as indicated above and avoid useless punctuation (e.g. periods after the initials of authors names or journal abbreviations).

Galley Proofs and Reprints. Galley proofs should be corrected and returned by fax or express delivery within 72 hours. Minor corrections or reasonable additions are permitted; however, excessive alterations will be charged to the authors. Papers accepted for publication will be printed without cost. The cost of printing color figures will be communicated upon request. Reprints may be ordered at cost by returning the appropriate form sent by the publisher.

Transfer of Copyright and Permission to Reproduce Parts of Published Papers. Authors will grant copyright of their articles to the Ferrata Storti Foundation. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.
Epidemiology and diagnosis of von Willebrand's disease

GIANCARLO CASTAMAN ... 1

Treatment of inherited von Willebrand's disease

AUGUSTO B. FEDERICI .. 10

Treatment of acquired von Willebrand's syndrome

AUGUSTO B. FEDERICI .. 17

The publication of this supplement has been funded by an educational grant from

Aventis Behring
Epidemiology and diagnosis of von Willebrand’s disease

GIANCARLO CASTAMAN
Department of Hematology and Hemophilia and Thrombosis Center, San Bortolo Hospital, Vicenza, Italy

von Willebrand’s disease (VWD) is an autosomally inherited bleeding disorder caused by a deficiency and/or abnormality of von Willebrand factor (VWF). VWF is a multimeric adhesive protein which plays an important role in primary hemostasis by promoting platelet adhesion to the subendothelium at sites of vascular injury. Moreover, it works as a carrier of factor VIII, thus indirectly contributing to the process of coagulation. The prevalence of VWD is about 1% in the general population, but that of clinically relevant cases is lower (about 100-200/ million of inhabitants). Bleeding manifestations are heterogeneous and mainly linked to the degree of the reduction of factor VIII caused by low or abnormal VWF. Most cases have a partial quantitative deficiency of VWF (type 1 VWD) with variable bleeding tendency, whereas qualitative variants (type 2 VWD) due to a dysfunctional VWF are clinically more homogeneous and account for about 20-30% of cases. Type 3 VWD is rare and the patients have a moderate to severe bleeding diathesis; the disease has a recessive pattern of inheritance and there is virtual absence of VWF. Heterozygous subjects are usually asymptomatic. The diagnosis of VWD may be difficult, especially that of type 1, since the laboratory phenotype of the disorder is very variable and heterogeneous and confounded by the influence on VWF levels by factors outside the VWF gene (e.g., blood group). An array of tests is usually required to characterize the several subtypes of the disorder in order to predict the best treatment modality.

© 2001, Ferrata Storti Foundation

Key words: von Willebrand factor, von Willebrand’s disease, inherited bleeding disorder
through an RGD sequence (amino acid residues 1744-1746) shared by other adhesive proteins. This binding makes adhesion irreversible, and contributes to platelet aggregation.1 Furthermore, VWF is relevant to coagulation because of its ability to serve as a carrier of factor VIII through non-covalent bonds involving the -NH2 termini, thus protecting it from proteolytic inactivation.1,3

Table 1 summarizes the current nomenclature of factor VIII/VWF complexes, as recommended by the International Society on Thrombosis and Hemostasis.

Classification of von Willebrand’s disease

Basically, the current revised classification of VWD identifies two major categories, characterized by quantitative (type 1 and 3) or qualitative (type 2) VWF defects. Furthermore, among type 2 four subtypes have been identified reflecting different pathophysiologic mechanisms (Table 2).4 Partial quantitative deficiency of VWF in plasma and/or platelets identifies type 1 VWD, whereas type 3 VWD is characterized by total absence or trace amounts of VWF in plasma and platelets.4 Until recently, the presence, although at a reduced concentration, of a fully array of multimers in the patient’s plasma and/or platelets was considered sufficient evidence for type 1 VWD. Furthermore, type 1 is easily distinguished from type 3 by its milder VWF deficiency (usually in the range of 20-40%), the autosomal dominant inheritance pattern and the presence of milder bleeding symptoms. Classical type 2 A and B VWD are characterized by the absence of high molecular weight multimers of VWF in plasma. However, the identification of qualitatively abnormal variants with decreased platelet-dependent function and the presence of normal multimers on gel electrophoresis has complicated the classification, requiring the addition of a new subtype, called 2M. Many, if not most type 1 cases, could be shifted to type 2M using more sophisticated functional and structural analyses capable of revealing single point mutations, affecting function but not multimeric structure and assembly. Furthermore, also type 2N (Normandy) shows a full array of multimers since the defect lies in the N-terminal region of the VWF where the binding domain for factor VIII resides.5

The subtype is phenotypically identified only by the FVIII- VWF binding test. Misclassification could also occur when a mutation for VWD type 2N is in compound heterozygosity with a type 1 or 3 mutation.6

Genetics and molecular biology of von Willebrand’s disease

The cloning of VWF gene has allowed the identification of several suitable restriction fragment length polymorphisms (RFLP) which demonstrate the co-segregation of VWD phenotype with haplotype-specific RFLPs pattern in family members of different kindreds with VWD (for review7). The knowledge of crucial segments of VWF involved in the interaction with GPIb initially prompted the fruitful search for mutations in exon 28 of the VWF gene which codes for the A1 and A2 domains of mature VWF (for review7). Most of the type 2A cases are due to missense mutations in the A1 domain. In particular R1597W or Q or Y and S1506L represent about 60% of cases.7 Expression experiments have demonstrated two possible mechanisms.8 Group I mutations show impaired secretion of high molecular weight multimers, due to secondary defective intracellular transport. Group II mutations show normal synthesis and secretion of a

Table 1. Recommended nomenclature of factor VIII/von Willebrand factor (VWF) complexes.

<table>
<thead>
<tr>
<th>Factor VIII</th>
<th>Protein</th>
<th>VIII</th>
<th>Antigen</th>
<th>VIII:Ag</th>
<th>Function</th>
<th>VIII:C</th>
</tr>
</thead>
<tbody>
<tr>
<td>von Willebrand factor</td>
<td>Mature protein</td>
<td>VWF</td>
<td>Antigen</td>
<td>VWF:Ag</td>
<td>Ristocetin cofactor activity</td>
<td>VWF:RCo</td>
</tr>
<tr>
<td></td>
<td>Collagen binding capacity</td>
<td>VWF:CB</td>
<td>Factor VIII binding capacity</td>
<td>VWF:VIIIIB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Classification of von Willebrand’s disease (modified from Sadler4).

<table>
<thead>
<tr>
<th>Quantitative deficiency of VWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1. Partial quantitative deficiency of VWF</td>
</tr>
<tr>
<td>Type 3. Virtually complete deficiency of VWF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qualitative deficiency of VWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2. Qualitative deficiency of VWF</td>
</tr>
<tr>
<td>A) Type 2A. Qualitative variants with decreased platelet-dependent function associated with the absence of high-molecular-weight VWF multimers</td>
</tr>
<tr>
<td>B) Type 2B. Qualitative variants with increased affinity for platelet GPIb</td>
</tr>
<tr>
<td>C) Type 2M. Qualitative variants with decreased platelet-dependent function not caused by the absence of high-molecular-weight VWF multimers</td>
</tr>
<tr>
<td>D) Type 2N. Qualitative variants with markedly decreased affinity for factor VIII</td>
</tr>
</tbody>
</table>
VWF which is probably more susceptible to in vivo proteolysis. The vast majority of type 2B cases are due to missense mutations in the A1 domain. About 90% of cases are due to R1306W, R1308C, V1316M and R1341Q mutations.7 Usually type 2A and 2B are autosomal dominant diseases with high penetrance and expressivity. Missense mutations in the FVIII-binding domain at NH2-termini of VWF penetrate and expressivity. Missense mutations and B are autosomal dominant diseases with high severity of bleeding within a given family.6 In these mutation (for example, R2535X) increases the coinheritance of R854Q mutation with a null pound heterozygotes producing an apparent dom-

notype. Many type 1 VWD cases might be com-

in most cases, especially in those with a mild phe-

genetic cause of type 1 VWD still remains elusive

penetrance. Despite its high prevalence, the precise

genic and non-genetic factors are likely to con-

tribute to produce the wide variability in the clinical

and laboratory phenotype.12 About 60% of the

variation in plasma VWF is due to genetic factors,

with the ABO group accounting for only about

30%.13 In type-O subjects level of VWF is 25-35%

lower than that in non-O individuals.24 Thus likely,

other unknown genetic factors may greatly influence

VWF levels and, taken together with ABO and

environmental effects, explain the wide variation

and incomplete penetrance of type 1 VWD. Fur-

themore, it is possible that there is a combination

of genetic modifier mutations outside the VWF gene in at least a subset of type 1 disease, thus accounting for the failure of linkage studies. A possible example has been provided by a murine model of VWD, the RIIIIS/J inbred mouse strain.15

In addition to the mechanisms possibly shared with some type 1 cases (see above), partial or total gene deletions have been reported in type 3 VWD.7 Notably, homozygosity for the gene deletion may be associated with appearance of antibodies against VWF, which may render replacement therapy ineffective and stimulate anaphylactic reaction upon treatment.7 In general, mutations may be scattered over the entire gene; however, some mutations (e.g 2680delC or Arg2535X) are particularly recurrent in North Europe.7

Prevalence of von Willebrand’s disease

A) Population studies. Only a few studies have tried to estimate the prevalence of VWD by screen-

ing small populations using formal, standardized criteria. The first study published in 1987 evaluat-

ed 1,218 schoolchildren aged 11-14 years in 4 small towns of the Veneto region in Northern Italy.16 A diagnosis of VWD was considered only for symptomatic children who had low VWF levels (VWF:RCO) and were members of a family with a convincing history of bleeding (probable VWD). A definite diagnosis was assigned if, in addition to these criteria, at least one other family member on the hemor-

hagic side had a low VWF level. Age-adjusted sepa-

rate ranges were adopted for O and non-O blood groups. Ten children (4 with probable and 6 with definite VWD) were classified as being affected (0.82%). This figure could range from 7 (0.57%) to 14 (1.15%) taking into account the 90% confidence interval for the lower limit of the normal range. The criteria for diagnosis were strictly conservative even though any bleeding symptoms except trivial were considered.

A subsequent study carried out on the same sample but using VWF:Ag instead of VWF:RCO as the screening test gave a slightly lower figure
showing that VWF:RCo is the more sensitive test. In 1993, Werner et al. published the results of a similar investigation carried out in 600 American adolescent schoolchildren aged 12-18 years. The criteria included at least one bleeding symptom, a family member with bleeding symptoms and low VWF. The overall prevalence was estimated to be 1.3%, with no racial difference (1.15% among Caucasians and 1.8% among Blacks). These data have been confirmed in two additional studies, not reported as full papers. Miller et al. in 1987 found a prevalence of VWD of 1.6% in adult blood donors from New York; however, the prevalence of symptomatic subjects with low VWF:RCo was 0.2%. In an additional study, Meriane et al. investigated the prevalence of VWD in Arabic-Turkish adult subjects. The figure was 1.23%, again with no racial differences. Table 3 summarizes the main characteristics of these studies. The large majority of subjects picked up by population studies appear to have mild disease, and most of them had not required detailed hemostatic evaluation before. It remains unknown whether these cases are due to mutations within the VWF gene or are the effect of a gene outside the VWF gene influencing the circulating level of VWF. Only extensive haplotype studies or the demonstration, as in murine VWD, of the effect of another gene could definitely clarify this issue.

B) Referral based. In this case, estimates of the prevalence of VWD are based on the number of patients registered at a specialized center, divided by the total population served by that center. Using this approach, the prevalence has been estimated to range from 4 to 10 cases/100,000 inhabitants. For example, in 1982 Nilsson, without any further specification on the methodology used, estimated that there were about 530 known cases (230 families) of VWD in Sweden (7/100,000 inhabitants), the same figure as for hemophilia in that country. An additional approach to the estimation of VWD was tried more recently by Bloom and Giddins in 1991 using a mail questionnaire to Hemophilia Centers worldwide. Underreporting was evident from some countries, notably North America. The authors gave an adjusted prevalence ranging from 0.37 to 23.9/100,000 (Scandinavia).

The major limitations of these estimations are that they rely on the assumption that all the potential patients have been identified, adequately examined and referred to the diagnostic center. However, a number of problems hamper the correct estimation of the prevalence of VWD based on referral. First of all, VWD has a variable penetrance and expressivity and not infrequently patients may remain asymptomatic throughout their life. The severity of bleeding symptoms also varies within a given family. Furthermore, as mentioned above, several variables may influence the level of circulating VWF. Finally, the diagnostic criteria are still far from being a definite validation, because of the difficulty in standardizing tests and the low sensitivity and specificity of laboratory tests. Reasonably, it could be assumed that the number of people with symptomatic VWD, requiring specific treatment, should be at least 100 per million, a widely quoted prevalence figure for clinically relevant cases.

Frequency of subtype of von Willebrand’s disease

The characterization of VWD subtype usually requires the analysis of the multimeric pattern of plasma VWF for a broad distinction between types 1 and 2. This allows the selection of the proper treatment (desmopressin or FVIII/VWF concentrates) for most patients. Specialized centers have usually been able to subclassify their patients in these ways. Table 4 summarizes the main series reported. These estimates are obviously biased since it is expected that many type 1 cases without major symptoms are not referred and that almost all severe type 3 are followed at a specialized center. Nevertheless, the prevalence of type 3 is probably also underestimated since the surveys on the prevalence of this subtype were based mainly on mail survey to leading hemophilia centers.

Table 3. Prevalence of VWD: analysis of population studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
<th>Population</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodeghiero et al. 16</td>
<td>History + VWF:RCo Family study</td>
<td>Caucasian children</td>
<td>0.82% (0.57-1.15)*</td>
</tr>
<tr>
<td>Rodeghiero et al. 17</td>
<td>As above + VWF:Ag instead of VWF:RCo</td>
<td>As above</td>
<td>0.7%</td>
</tr>
<tr>
<td>Miller et al. 19</td>
<td>VWF:RCo</td>
<td>Adult blood donors</td>
<td>1.6% (0.2% bleeder)</td>
</tr>
<tr>
<td>Meriane et al. 20</td>
<td>History + VWF:RCo Family study</td>
<td>Arabic-Turkish Adult students</td>
<td>1.23%</td>
</tr>
<tr>
<td>Werner et al. 21</td>
<td>History + VWF:RCo Family study</td>
<td>Caucasian-Black children</td>
<td>1.3% (1.15% Caucasian 1.81% Black)</td>
</tr>
</tbody>
</table>

* Prevalence taking into account the 90% confidence interval for the lower limit of normal range.
with ill-defined inclusion criteria and for the purpose of the feasibility of a study of atherosclerosis in VWD. In contrast to the above mentioned percentages, almost all cases in population studies had type 1 disease, further confirming that mild cases are probably underestimated in series from specialized centers.

Clinical manifestations

Clinical expression of VWD is usually mild in type 1 disease, increasing in severity in type 2 and type 3. However, in some families a variable severity of bleeding manifestations is evident, underlining the different molecular bases responsible for the diverse phenotypes of the disorder and its variable penetrance. In general, the severity of bleeding correlates with the degree of the reduction of FVIII:C, but not with the magnitude of BT prolongation or with ABO blood type of the patient. Mucocutaneous bleeding (epistaxis, menorrhagia) is a typical, prominent manifestation of the disease and may affect quality of life. VWD may be highly prevalent in patients with isolated menorrhagia. Females with VWD may require treatment with antifibrinolytics, iron supplementation or an estrogen-progestin pill to control heavy menorrhages. Bleeding after dental extraction is the most frequent post-operative bleeding manifestation. Since FVIII:C is usually only mildly reduced, manifestations of a severe coagulation defect (hemarthrosis, deep muscle hematoma) are rarely observed in type 1 VWD and are mainly post-traumatic, whereas in type 3 the severity of bleeding may sometimes be similar to that of hemophilia. Bleeding after parturition is rarely observed in type 1 disease since FVIII/VWF levels tend to correct towards the end of pregnancy in mild type 1 cases. However, FVIII/VWF levels fail to normalize in a few cases and these need antihemorraghic prophylaxis for parturition. Women with type 2A and B and type 3 disease usually need replacement therapy post-partum to prevent immediate or late bleeding. Post-operative bleeding may not occur even in more severely affected type 1 patients, except following from procedures which involve richly vascular tissues or organs (e.g., tonsillectomy, thyroidectomy), whereas prophylactic treatment is always required in patients with type 3 disease.

To date, only two descriptive reports of symptoms in VWD have been provided and only in one was a differentiation according to subtype taken into account. Table 5 shows the relative frequency of bleeding symptoms in these two large series of patients with VWD diagnosed at specialized centers. Notably, in the Scandinavian experience, the percentage with post-partum bleeding overlaps that observed in normal females. It is striking that the distribution of different types of bleeding (apart from joint bleeding) is similar among the different subtypes. It should, however, be borne in mind that the severity of bleeding manifestations (for example menorrhagia or gastrointestinal bleeding) is more prominent in type 3 VWD, often requiring substitutive treatment.

Diagnosis of von Willebrand’s disease

VWD has a wide spectrum of severity ranging from few doubtful hemorrhagic symptoms to severe life-threatening bleeding episodes. This variability is due not only to the many different molecular defects of the VWF gene which may impair its hemostatic function, but also the influences exerted by other genes (e.g., those specifying the ABO
blood group). Furthermore, many acquired conditions, either physiological (stress, pregnancy) or pathological (inflammation), may play a role in the fluctuation of VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

The diagnosis of VWD involves the study of the family of the subject referred for investigation in order to document a convincing personal and/or familial bleeding history co-segregating with low VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

The diagnosis of VWD involves the study of the family of the subject referred for investigation in order to document a convincing personal and/or familial bleeding history co-segregating with low VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

The diagnosis of VWD involves the study of the family of the subject referred for investigation in order to document a convincing personal and/or familial bleeding history co-segregating with low VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

The diagnosis of VWD involves the study of the family of the subject referred for investigation in order to document a convincing personal and/or familial bleeding history co-segregating with low VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

The diagnosis of VWD involves the study of the family of the subject referred for investigation in order to document a convincing personal and/or familial bleeding history co-segregating with low VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

The diagnosis of VWD involves the study of the family of the subject referred for investigation in order to document a convincing personal and/or familial bleeding history co-segregating with low VWF levels. Thus, the diagnosis of VWD, and in particular of type 1, may require several laboratory assessments.

Table 6. Basic and discriminating laboratory assays for the diagnosis of von Willebrand’s disease.

<table>
<thead>
<tr>
<th>Test</th>
<th>Pathophysiological significance</th>
<th>Diagnostic significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ristocetin cofactor (VWF:RCo) using formalin-fixed platelets and fixed ristocetin concentration (1 mg/mL)</td>
<td>VWF-Gp Ib interaction as mediated by ristocetin in vitro (ristocetin, normal platelets, patient’s plasma)</td>
<td>“Functional test”; most sensitive screening test</td>
</tr>
<tr>
<td>Immunologic assay with polyclonal antibody (VWF:Ag)</td>
<td>Antigen concentration</td>
<td>Correlates with VWF:RCo in type 1; reduced VWF:RCo/VWF:Ag (< 0.7) suggests type 2 VWD; level < 3 U/dL suggests type 3 VWD</td>
</tr>
<tr>
<td>FVIII:C level (one-stage assay)</td>
<td>FVIII-VWF interaction</td>
<td>Not specific, but useful for patient management; disproportionately reduced compared to VWF in type 2N VWD</td>
</tr>
<tr>
<td>Bleeding time (Ivy method)</td>
<td>Platelet-vessel wall VWF-mediated interaction</td>
<td>Not specific; correlates with platelet VWF content in type 1 VWD</td>
</tr>
<tr>
<td>Ristocetin-induced platelet aggregation (RIPA) using patient platelets</td>
<td>Threshold ristocetin concentration inducing patient’s platelet-rich plasma aggregation</td>
<td>Allows the discrimination of type 2B, characterized by reduced threshold; absent in type 3 at every ristocetin concentration</td>
</tr>
<tr>
<td>Multimeric analysis (low resolution gel)</td>
<td>Multimeric composition of VWF</td>
<td>Presence of full range of multimers in type 1; high molecular weight multimers absent in type 2 A and B; multimers absent in type 3</td>
</tr>
<tr>
<td>Platelet VWF</td>
<td>Reflects endothelial stores</td>
<td>Useful to predict responsiveness to desmopressin in type 1</td>
</tr>
<tr>
<td>Binding of VWF to VWF</td>
<td>Interaction of normal FVIII with patient plasma VWF</td>
<td>Allows the identification of type 2N, characterized by low binding values</td>
</tr>
</tbody>
</table>

bleeding time (BT), platelet count and examination of a peripheral blood smear, APTT, and prothrombin time. If the results do not suggest a specific disorder, it is appropriate to proceed to measure VWF, given the high prevalence of this disorder. Apart from VWD, other common defects encountered include some qualitative platelet defects, such as storage pool deficiency,43 or, more rarely, release reaction defects. These defects should be investigated in the presence of prolonged BT and no VWF deficiency. In the case of prolonged APTT and/or PT, assay of specific factors is indicated. BT (Ivy method) is still maintained as an important screening test, despite its recognized limitations in predicting surgical bleeding.44 A VWF assay should be carried out even in the presence of a normal BT in a patient with a convincing bleeding history, but its prolongation is required to proceed with platelet function studies. Patients with prolonged BT and no VWF or platelet defects are encountered more often than reported. From the practical point of view, these patients usually respond to desmopressin and a test infusion is indicated.45

Three main measurements reflect the level and/or the activity of VWF in plasma, namely: VWF antigen (VWF:Ag), VWF ristocetin cofactor activity...
The pros and cons of the different methods used for these measurements have been extensively discussed. VWF:Ag is usually measured by an ELISA using polyclonal antibodies, which is suitable for automation and robotic instrumentation. VWF:RCo is best measured by using formalin-fixed normal platelets and ristocetin at a fixed concentration (1 mg/mL, final concentration). It is a sensitive test, but its main limitation is poor interlaboratory reproducibility. Table 7 shows other proposed tests for the diagnosis of VWD.

In the last decade many investigators have proposed VWF:CB as a substitute for VWF:RCo, since in their hands this assay was sensitive to high molecular weight multimers such as VWF:RCo, but more reproducible and easier to perform. However, more studies are needed before recommending its use in clinical practice.

Table 8 summarizes a practical approach to the diagnosis of VWD based on the best scientific evidence and current clinical practice.

Conclusions
VWD is the most frequent inherited bleeding disorder. Only phenotypic diagnosis is so far easily available because of the difficulties of molecular diagnosis. Ideally, the diagnostic criteria should include all of the following: 1) bleeding symptoms, 2) low VWF level and 3) some evidence of inheritance based on either bleeding symptoms or low VWF. Any disease characterized by hemorrhage and low VWF should be considered as VWD, independently of the demonstration of a specific mutation.
within the VWF gene.

The prevalence of clinically relevant VWD has not been estimated directly in the population. A figure of around 100 cases/1,000,000 population, similar to that of hemophilia A, is widely accepted, but it stems only from the limited data reported. No established criteria are available for screening the population before surgery or other risky situations and caution should be used before defining a subject with mild reduction of VWF and/or doubtful bleeding history as having VWD, without evidence of a clear personal and/or family bleeding history and consistently reduced VWF values. Repeated investigation is warranted should bleeding symptoms become more serious. Desmopressin is almost always successful in these cases.

References

43. Nieuwenhuis HK, Akkerman JW, Sixma JJ. Patients with a prolonged bleeding time and normal aggregation tests may have storage pool deficiency: studies on one hundred six patients. Blood 1987; 70:620-3.
The main goals of treatment in von Willebrand’s disease (VWD) are to correct the dual defects of hemostasis caused by a reduced or abnormal von Willebrand factor (VWF), i.e. the prolonged bleeding time (BT) and the deficiency of factor VIII coagulant activity (FVIII:C). The correction of VWF defect can be achieved by two therapeutic approaches: desmopressin which can increase the endogenous VWF and/or the administration of exogenous VWF through factor VIII/VWF concentrates. Desmopressin (DDAVP), has been widely used in the management of VWD. DDAVP is safe, inexpensive and effective in about 2/3 of all VWD patients. But there are limits: it is not effective in severe forms of VWD such as type 3 and in several cases of type 1 and 2 VWD. In type 2B VWD DDAVP can induce transient thrombocytopenia. Most patients treated repeatedly with DDAVP become less responsive to therapy because tachyphylaxis may occur. VWD patients who are or become unresponsive to DDAVP require substitutive therapy with factor VIII/VWF concentrates. Other forms of treatment can be considered as adjunctive or alternative to these. In 1998 an Italian National Registry of VWD (Re.Na.Wi.), granted by the Italian Ministry of Health, was organized on behalf of the Italian Association of Hemophilia Centers (AICE). The aims of the Re.Na.Wi were to evaluate the retrospective natural history of VWD in Italy (> 1,000 cases) with information about the need for desmopressin and FVIII/VWF concentrates. The data collection of Re.Na.Wi is still ongoing but preliminary results have been already reported and used to update the Italian Guidelines for diagnosis and management of VWD which were published on behalf the AICE in June 2000. In this review article the criteria of VWD treatment as proposed by the Italian Guidelines will be discussed.

Desmopressin in VWD

Desmopressin (1-deamino-8-D-arginine vasopressin, DDAVP) is a synthetic analog of vasopressin originally designed for the treatment of diabetes insipidus. DDAVP increases FVIII and VWF plasma concentrations without important side effects when administered to healthy volunteers or patients with mild hemophilia and VWD. The mode of action of DDAVP is not completely understood. Addition of DDAVP to cultured endothelial cells has no effect on VWF synthesis or secretion, so that the agent is presumed to act through an as yet unidentified second messenger. The first clin-
ical trial of DDAVP was successfully performed in 1977, with the aim of avoiding the use of blood products in mild hemophilia and VWD patients who needed dental extractions and other surgical procedures. Following these early observations, DDAVP has become widely used for the treatment of these diseases. The obvious advantages of DDAVP are that it is relatively inexpensive and carries no risk of transmitting blood-borne viruses.

DDAVP is usually administered intravenously at a dose of 0.3 µg/kg diluted in 50 mL saline infused over 30 minutes. This treatment increases plasma FVIII and VWF 3 to 5 times above the basal levels within 30 minutes. In general, high FVIII/VWF concentrations last for 6 to 8 hours. Since the responses in a given patient are consistent on different occasions, a test dose of DDAVP administered at the time of diagnosis helps to establish the individual response patterns. Infusions can be repeated every 12 to 24 hours depending on the type and severity of the bleeding episode. However, several patients treated repeatedly with DDAVP become less responsive to therapy. The drug is also available in concentrated forms for subcutaneous and intranasal administration, which can be convenient for home treatment. Side effects of DDAVP are usually mild and include tachycardia, headache, and flushing. These symptoms are attributed to the vasomotor effects of the drug and can often be attenuated by slowing the rate of infusion. Hyponatremia and volume overload due to the antidiuretic effects of DDAVP are relative rare. A few cases have been described, mostly in young children who received closely repeated infusions. Even though no thrombotic episodes have been reported in VWD patients treated with DDAVP, this drug should be used with caution in elderly patients with atherosclerotic disease, because a few cases of myocardial infarction and stroke have occurred in hemophiliacs and uremic patients given DDAVP.

DDAVP is most effective in patients with type 1 VWD, especially those who have normal VWF in storage sites (type 1, platelet normal): in these patients FVIII, VWF and the BT are usually corrected within 30 min and remain normal for 6-8 hours. In other VWD subtypes, responsiveness to DDAVP is variable: a poor and short-lasting response is observed in type 1, platelet low. In type 2A, FVIII levels are usually increased by DDAVP but the BT is shortened in only a minority of cases. Desmopressin is contraindicated in type 2B, because of the transient appearance of thrombocytopenia. However, there have been reports on the clinical usefulness of DDAVP in some 2B cases.

In type 2N relatively high levels of FVIII are observed following DDAVP, but released FVIII circulates for a shorter period in patient’s plasma because the stabilizing effect of VWF is impaired. Patients with type 3 VWD are usually unresponsive to DDAVP. However, a subgroup of these patients has been recently identified in whom FVIII becomes normal after DDAVP, even though the BT remains markedly prolonged. This peculiar behavior will be understood only when the characterization of the genetic defects of these patients becomes available.

The preliminary results of two large studies on the use of DDAVP in VWD are now available: a retrospective analysis on mild and severe type 1 and 2 VWD patients (n = 774) of the Italian National Registry of VWD; and a prospective European study on clinically severe forms of type 1 and 2 VWD.

Retrospective studies

Among many other parameters collected by 16 Italian Hemophilia Centers in a total number of 1,234 patients enrolled in the registry, specific information on VWD patients who could be responsive to DDAVP was available. To evaluate the use of DDAVP retrospectively in all cases of mild and severe type 1 and 2 VWD, we used the following criteria: a) inclusion criteria. All hereditary type 1, 2A, 2M and 2N VWD patients with a bleeding history (more than one lifelong episode of severe blood loss); b) protocol of DDAVP test. Test: a 0.3 µg/kg i.v. infusion was performed with BT and FVIII/VWF tested before and 0.5, 1, 2, 4 hours after DDAVP; c) definition of response to DDAVP: cases who, after 2 hours, showed at least 3-fold increases of baseline levels of FVIII:C and VWF:RCo, with levels of at least 30 IU/dL and BT of 12 min or less. Among 774 VWD cases with a bleeding history enrolled in the study, 566/774 (73%) performed a DDAVP test; 408/566 (72%) were responsive to DDAVP; 206/408 (51%) used DDAVP without and 72/408 (18%) with FVIII/VWF concentrates to treat their bleeding episodes.

Prospective studies

The aims of the prospective European Multi-center study were to evaluate the biological response to DDAVP in severe type 1 and 2 VWD patients and to define the proportion of DDAVP-unresponsive cases who may require plasma-derived FVIII/VWF concentrates. The protocol and definition of response were similar to those of the Italian Study but the inclusion criteria were different: hereditary type 1 and 2 VWD with a severe bleeding history...
(more than one lifelong episode of severe blood loss) and at least one of the following parameters: BT > 15 min; WVF/RCo < 10 IU/dL; FVIII:C < 20 IU/dL. Patients with type 3 and type 2B VWD, with acquired von Willebrand's syndrome, thus aged < 12 and > 65 years, patients with cardiovascular diseases and epilepsy or with previous reactions with DDAVP were excluded. Among a total of 957 VWD patients followed by five Hemophilia Centers, 116/957 (12%) satisfied the inclusion criteria and 67/957 (7%) were enrolled in this study after giving their informed consent. Only 18/67 (27%) clinically severe type 1 and 2 VWD patients were responsive to DDAVP, suggesting that a DDAVP infusion test should always be performed in patients with clinically severe VWD to exclude the need for replacement therapy with concentrates.21

The apparent conflicting results obtained by these studies are certainly due to the different inclusion criteria. However, these data might suggest that, though DDAVP has been used in VWD since 1997, its effects and limits are not completely clarified especially when its administration must be repeated for several days during surgery.

Other non-transfusional therapies for VWD
Two other types of non-transfusional therapies are used in the management of VWD, i.e. antifibrinolytic amino acids and estrogens.

Antifibrinolytic amino acids
Antifibrinolytic amino acids are synthetic drugs which interfere with the lysis of newly formed clots by saturating the binding sites on plasminogen, thereby preventing this latter's attachment to fibrin and making plasminogen unavailable within the forming clot. Epsilon aminocaproic acid (50 mg/kg four times a day) and tranexamic acid (25 mg/kg three times a day) are the most widely used antifibrinolytic amino acids. Both medications can be administered orally, intravenously or topically and are useful as adjuncts in the management of oral cavity bleeding, epistaxis, gastrointestinal bleeding and menorrhagia. As drugs that inhibit the fibrinolytic system, they carry a potential risk of thrombosis in patients with an underlying prothrombotic state. They are also contraindicated in the management of urinary tract bleeding.

Estrogens
Estrogens increase plasma VWF levels, but the response is so variable and unpredictable that they are not widely used for therapeutic purposes. It is common clinical experience that the continued use of oral contraceptives is very useful in reducing the severity of menorrhagia in women with VWD, even in those with type 3, despite the fact that FVIII/VWF levels are not modified.

FVIII/VWF concentrates in VWD
VWD patients who are or become unresponsive to DDAVP must be treated with FVIII/VWF concentrates. For many years cryoprecipitate has been the mainstay of replacement therapy but, after the introduction of virucidal methods, FVIII/VWF concentrates have been considered much safer than cryoprecipitate. In fact, these concentrates consistently correct the FVIII:C defect and contain a large amount of VWF, except for monoclonally purified concentrate.2-3 Several different FVIII/VWF concentrates have been produced from plasma by pharmaceutical companies and are now commercially available: the characteristics of the four FVIII/VWF concentrates registered in Italy, as reported in the Italian guidelines for VWD diagnosis and therapy,4 are summarized in Table 1. These plasma-derived FVIII/VWF concentrates have been tested in both pharmacokinetic and efficacy studies by many authors.22-32 A recombinant VWF concentrate has also been produced: however, it has been tested in animals but not in patients with VWD.33

Pharmacokinetic studies
The most extensive studies about in vitro and pharmacokinetic analysis of FVIII/VWF concentrates were published in 1992.24 Mannucci's study was the first and unique comparison, in a complete cross-over, randomized trial, of the four virus-inactivated FVIII/VWF concentrates most used to treat severe VWD. This approach was further approved by the Scientific Standardization Committee on VWF of the International Society of Haemostasis and used to prepare the recommendations for testing new FVIII/VWF concentrates.25 In that study, none of the four FVIII/VWF concentrates tested showed a VWF protein with an intact multimeric structure similar to that of normal plasma or of cryoprecipitate, as detected by the correct analytical system to search for VWF high molecular weight multimers (i.e. low resolution agarose gels). Despite this abnormal multimeric structure of the VWF contained in the tested commercial products, all four FVIII/VWF concentrates were equally effective in increasing FVIII/VWF activities in type 3 VWD cases as proven by pharmacokinetic studies. All were effective in obtaining normal and sustained levels of FVIII:C post-infusion, although peak levels were more delayed for one of the concentrates which is devoid of FVIII:C.24 VWF antigen (VWF:Ag) and VWF
ristocetin cofactor (VWF:RCo) activities were also normalized by all FVIII/VWF concentrates. However, no FVIII/VWF concentrate normalized the BT in a sustained fashion, indicating once more that BT is not coincident with VWF:RCo. In fact, all FVIII/VWF concentrates are always able to correct the VWF:RCo, while BT is not always corrected.

Pharmacokinetic studies of single FVIII/VWF concentrates have also been organized: Menaché et al. studied the pharmacokinetics of VWF and FVIIIC in severe type 3 VWD after the infusion of a VWF concentrate devoid of FVIII and they were able to estimate the rate of FVIII:C synthesis in these patients. An additional cross-over pharmacokinetic study has been organized on behalf of the European Community and data will be available within the end of 2001. The aims of this European multicenter study is to evaluate a new plasma-derived concentrate devoid of FVIII (VWF-SD-35-DH) versus Haemate–P or Innobrand (France) in patients with clinically severe VWD unresponsive to DDAVP. Data from another large multicenter pharmacokinetic cross-over study performed with Alphanate-SD versus Alphanate-SD/HT in different VWD American and Italian patients will be published soon. Once again, these two FVIII/VWF concentrates can always correct FVIII/VWF activities but do not always normalize BT (BT normalized = 33%; partially corrected = 43%; unchanged = 24%).

Efficacy studies and clinical practice
It is well known in clinical practice that clinical hemostasis following FVIII/VWF concentrates can be achieved in all types of VWD regardless of whether the BT is corrected. This is particularly true in the management of VWD patients during surgery, as shown by the experience of several hematologists and by the results of the recent efficacy multi-center study. Haemate-P was very effective in the management of both pediatric and adult patients with VWD. Alphanate was effective in treating and preventing bleeding episodes: according to the results of the Alphanate Study Group, 73% of bleeding episodes were solved by a single infusion of concentrate and hemostatic control during surgery was provided even in the absence of BT correction. However, physicians who are giving FVIII/VWF concentrate for several days to prevent bleeding after surgery should be aware of the delayed response of FVIII:C, as originally observed following cryoprecipitate. Another multicenter efficacy study by using the VWF concentrate devoid of FVIII is now in progress it will be interesting to evaluate whether or not this concentrate can correct BT without inducing excessive levels of FVIII:C.

Specific therapeutic approaches
Mucosal and gastrointestinal bleeding
Mucosal bleeding occurs very frequently in VWD and may last for a long time. In the case of gastrointestinal bleeding, VWD patients can stay in hospital for many days and sometimes require months of treatment. We have had several patients with this situation and most of them were managed with daily or every other day infusions of FVIII/VWF concentrates. When bleeding persists despite replacement therapy, other therapeutic options are available. DDAVP, given after FVIII/VWF concentrates, may shorten or normalize the BT in patients with type 3 VWD as shown in the study with DDAVP after cryoprecipitate. Platelet concentrates (given before or after FVIII/VWF concentrates, at doses of 4-5×10^11 platelets) may achieve similar effects in patients unresponsive to concentrates alone, both in terms of BT correction and

<table>
<thead>
<tr>
<th>Products (manufacturers)</th>
<th>Purification</th>
<th>Viral inactivation</th>
<th>Specific activity* (U/mg prot.)</th>
<th>VWF-RCo/Ag° (ratio)</th>
<th>VWF-RCo/FVIII° (ratio)</th>
<th>Other proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emoclot D.I. (Kedrion)</td>
<td>Ion exchange chromatography</td>
<td>Solv./Det., +30 min. a 100°C</td>
<td>> 80</td>
<td>0.61</td>
<td>1.16</td>
<td>Albumin -</td>
</tr>
<tr>
<td>Fanhdi (Grifols)</td>
<td>Affinity chromatography (heparin)</td>
<td>Solv./Det., +72 hrs at 80°C</td>
<td>>100</td>
<td>0.83</td>
<td>1.48</td>
<td>Albumin +</td>
</tr>
<tr>
<td>Haemate P (Aventis Behring)</td>
<td>Multiple precipitation</td>
<td>Pasteurization, 10 hrs at 60°C</td>
<td>40±6</td>
<td>0.96</td>
<td>2.54</td>
<td>Albumin +</td>
</tr>
<tr>
<td>Immunate (Baxter)</td>
<td>Ion exchange chromatography</td>
<td>Det. + Vapor heat 10 h at 60°; 1h at 80°</td>
<td>100±50</td>
<td>0.47</td>
<td>1.10</td>
<td>Albumin +</td>
</tr>
</tbody>
</table>

*a Specific activity measured as FVIII before adding albumin as stabilizer. *VWF:RCo values are not available in the technical description of all concentrates; therefore only the mean values calculated by manufacturers on different concentrate stocks could be reported.
bleeding control, as shown in the study of platelet concentrates after cryoprecipitate.35 These data emphasize the important role of platelet VWF in establishing and maintaining primary hemostasis.

VWD during pregnancy and delivery
During pregnancy VWF and FVIII levels tend to rise in type 1 and 2 VWD but this rise does not occur until the 10–11th weeks of gestation. No significant changes occur in patients with type 3 VWD. Since improvements in VWF and FVIII levels during pregnancy are variable, patients should be monitored during pregnancy and for several weeks after delivery when levels fall rapidly and may cause late bleeding.36 In type 1 VWD, FVIII levels are the best predictor of the risk of bleeding at delivery. The risk of bleeding is minimal when FVIII is > 50 U/dL but can be significant when it is lower than 20 U/dL.36 Careful surgical hemostasis along with effective uterine contraction usually compensates for a prolonged BT. In type 3 VWD, characterized by prolonged BT and low FVIII levels, replacement therapy with concentrates is necessary. Thrombocytopenia may develop or be aggravated in patients with type 2B VWD during pregnancy,37,38 but it is not clear whether thrombocytopenia exacerbates clinical bleeding.

Patients with type 3 VWD and allo-antibodies
For the rare patients with type 3 VWD who develop anti-VWF alloantibodies after multiple transfusions, the infusion of VWF concentrates not only is ineffective, but may also cause post-infusion anaphylaxis due to the formation of immune complexes.40–44 These reactions may be life-threatening.43 To overcome this reaction, a patient undergoing emergency abdominal surgery was treated with recombinant FVIII, because this product, being completely devoid of VWF, did not cause anaphylactic reactions. Due to the very short half-life of FVIII devoid of its VWF carrier, recombinant FVIII had to be administered by continuous i.v. infusion, at very large doses in order to be sufficient to maintain FVIII levels above 50 U/dL for 10 days after surgery.44

Recommendations and future expectations
Thanks to improved diagnosis, patients with different types of VWD can nowadays be treated with desmopressin and/or FVIII/VWF concentrates with more appropriateness. The treatments of choice and the alternative and adjunctive therapies in each VWD subtype as recommended by the Italian Association of Hemophilia Centers are summarized in Table 2. The dosage of FVIII/VWF concentrates to be used in VWD patients unresponsive to DDAVP are also shown (Table 3). The Italian guidelines for VWD management further suggest that patients who are responsive to desmopressin should be identified immediately at the time of diagnosis. Those who are unresponsive to DDAVP and who may require plasma-derived FVIII/VWF concentrates should be vaccinated against the major viral infections.5.

Two issues about VWD management are still open at the beginning of the third millennium: i) the identification and characterization of the patients who are responsive to DDAVP; and ii) the use of more purified VWF concentrates with or without FVIII. The first issue may well be resolved

Table 2. Management of different types and subtypes of von Willebrand’s disease.

<table>
<thead>
<tr>
<th>Type</th>
<th>Treatment of choice</th>
<th>Alternative and adjunctive therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Desmopressin</td>
<td>Antifibrinolytics, estrogens</td>
</tr>
<tr>
<td>Type 2A</td>
<td>Factor VIII-VWF concentrates</td>
<td></td>
</tr>
<tr>
<td>Type 2B</td>
<td>Factor VIII-VWF concentrates</td>
<td></td>
</tr>
<tr>
<td>Type 2M</td>
<td>Factor VIII-VWF concentrates</td>
<td></td>
</tr>
<tr>
<td>Type 2N</td>
<td>Desmopressin</td>
<td></td>
</tr>
<tr>
<td>Type 3</td>
<td>Factor VIII-VWF concentrates</td>
<td>Desmopressin, platelet concentrates</td>
</tr>
<tr>
<td>Type 3 with alloantibodies</td>
<td>Recombinant factor VIII</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Doses of factor VIII/VWF concentrates recommended in von Willebrand’s disease patients unresponsive to desmopressin.

<table>
<thead>
<tr>
<th>Type of bleeding</th>
<th>Dose (IU/kg)</th>
<th>No. of infusions</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major surgery</td>
<td>50</td>
<td>Once a day or every other day</td>
<td>Maintain factor VIII > 50 IU/dl until healing is complete</td>
</tr>
<tr>
<td>Minor surgery</td>
<td>30</td>
<td>Once a day or every other day</td>
<td>Factor VIII >30 IU/dl until healing is complete</td>
</tr>
<tr>
<td>Dental extractions</td>
<td>20</td>
<td>Single</td>
<td>Factor VIII >30 IU/dl for up to 6 hours</td>
</tr>
<tr>
<td>Spontaneous or post-traumatic bleeding</td>
<td>20</td>
<td>Single</td>
<td></td>
</tr>
</tbody>
</table>

Spontaneous or post-traumatic bleeding
by a three-year International Project entitled Molecular and Clinical Markers for Diagnosis and Management of type 1 VWD, sponsored by the European Community. In this project, started in September 2000, twelve European Hemophilia centers will enrol 200 families with type 1 VWD and will correlate the phenotypic data with molecular abnormalities, inheritance pattern and response to DDAVP. The second issue will be explored by the ongoing pharmacokinetic and efficacy studies with FVIII/VWF concentrates with or without FVIII:C. The pharmacokinetics of FVIII:C following FVIII/VWF concentrates in VWD is important to establish whether or not there are indications for pure VWF concentrates in VWD is important to establish whether or not there are indications for pure VWF concentrates in VWD. The ongoing pharmacokinetic and efficacy studies with DDAVP. The second issue will be explored by the cooperative study entitled Optimizing Orphan Drug Therapy in Severe Forms of VWD. The data from this study, sponsored by the European Community started in 1997, will be available within 2001.

References

Acquired von Willebrand’s syndrome (AVWS) is a rare acquired bleeding disorder similar to the congenital von Willebrand’s disease (VWD) in terms of laboratory findings. Diagnosis of AVWS can be very difficult and treatment has usually been empirical. Compared to the congenital VWD (0.1-1% of the general population), the cases of AVWS reported in the literature (about 300) since 1968 are likely to underestimate the true prevalence. However, large retrospective or prospective studies are not available. Recently, the data from an international registry on 186 AVWS cases, provided retrospectively by Departments of Hematology and Oncology and Hemophilia Centers world-wide, have been used to prepare guidelines for the diagnosis and management of this acquired disorder. AVWS cases are associated with lymphoproliferative or myeloproliferative disorders, cardiovascular diseases, neoplasia and other miscellaneous clinical conditions. Bleeding episodes can usually be managed by desmopressin, FVIII/VWF concentrates, immunoglobulins, plasmapheresis, steroids and immunosuppressive drugs but none of these therapeutic approaches is always effective in all AVWS cases. Therefore, treatment must be chosen in each patient according to the underlying disorder as well as to the type and severity of bleeding.

©2001, Ferrata Storti Foundation

Key words: acquired von Willebrand’s syndrome, anti-factor VIII/von Willebrand factor antibodies, therapy, desmopressin, factor VIII/von Willebrand factor concentrates, immunoglobulins, steroids, immunosuppressive agents.
orders (2%) and other miscellaneous conditions (9%). The distribution of these underlying disorders as obtained from both the literature and the registry is summarized in Figure 1.

Diagnosis and pathogenesis of AVWS

The diagnosis of AVWS is usually based on laboratory findings typical of VWD in patients without a personal or family history of bleeding. Many attempts have been made to develop laboratory tests to demonstrate the presence of an inhibitor against VWF. Unlike other acquired hemostatic defects such as factor VIII deficiency (i.e., acquired hemophilia A), inhibitory antibodies against FVIII/VWF can be demonstrated in only a relatively small proportion (10-20%) of cases with AVWS and therefore the pathogenetic mechanism of the VWF deficiency often remains undetermined. It has been proven that VWF is normally synthesized in most cases of AVWS, except for those with hypothyroidism which are characterized by decreased synthesis of VWF. The normally synthesized VWF is removed at an accelerated rate from plasma through five possible pathogenetic mechanisms (Table 2). However none of the proposed mechanisms appears to be disease-specific: the same mechanism can be responsible for AVWS in many different diseases and more than one mechanism can induce AVWS in one of the underlying disorders known to be associated with AVWS.

Management of AVWS: general criteria

In the absence of a consistent pathogenetic mechanism, the management of AVWS has usually been empirical. The goals of treatments are threefold: a) to treat the underlying disease whenever possible; b) to control any bleeding episodes; c) to prevent bleeding whenever an invasive procedure is deemed necessary. In several disorders associated with AVWS, surgery, chemotherapy, radiotherapy or immunosuppressive drugs can sometimes control the underlying disease, with resolution of the bleeding diathesis and normalization of the laboratory abnormalities. In others, such as AVWS associated with a monoclonal gammopathy of undetermined significance (MGUS), the underlying disease is usually not treated. Hence the best approach to stop bleeding episodes and/or to prevent bleeding during surgery must be found.

Treatment of the underlying disorders

An extensive search for one of the underlying disorders usually associated with AVWS (Table 1) is recommended when a new case of AVWS is diagnosed. Treatment of the underlying disorder usually results in the correction of the hemostatic defects causing the AVWS. In fact, spontaneous regres-

Table 1. List of underlying disorders associated with AVWS.

<table>
<thead>
<tr>
<th>Lymphoproliferative disorders</th>
<th>Chronic lymphocytic leukemia</th>
<th>Non-Hodgkin’s lymphoma</th>
<th>Hairy-cell leukemia</th>
<th>Monoclonal gammopathy of undetermined significance</th>
<th>Multiple myeloma</th>
<th>Waldenstrom’s macroglobulinemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloproliferative disorders</td>
<td>Essential thrombocythemia</td>
<td>Polycthemia vera</td>
<td>Chronic granulocytic leukemia</td>
<td>Acute myelocytic leukemia</td>
<td>Acute myelomonocytic leukemia</td>
<td></td>
</tr>
<tr>
<td>Solid tumors</td>
<td>Wilms’ tumor (nephroblastoma)</td>
<td>Adenocarcinoma of the stomach</td>
<td>Adrenal cortical carcinoma</td>
<td>Peripheral neuroectodermal tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunological disorders</td>
<td>Systemic lupus erythematosus</td>
<td>Hypothyroidism</td>
<td>Scleroderma</td>
<td>Mixed connective tissue disease</td>
<td>Graft-versus-host disease</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular diseases</td>
<td>Aortic stenosis</td>
<td>Mitral valve prolapse</td>
<td>Congenital cardiac defects</td>
<td>Gastrointestinal angiodysplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Pathogenetic mechanisms of AVWS.

- a) specific auto-antibodies;
- b) non-specific antibodies that form circulating immune-complexes and favor VWF clearance by Fc-bearing cells;
- c) absorption onto malignant cell clones;
- d) increased proteolytic degradation;
- e) less of high VWF multimers by high shear stress conditions.

Note that a reduced VWF synthesis has been demonstrated in AVWS associated with hypothyroidism.
sion of the hemostatic defects has been observed only occasionally. Successful approaches have included surgical removal of a solid tumor or surgical repair of a heart valve defect. Chemotherapy used to induce remission of hematologic disorders may correct AVWS and the AVWS associated with high platelet counts also usually responds very well to cytoreduction. Radiotherapy can also be effective in some cases. Hormone replacement corrects the AVWS associated with hypothyroidism. In the case of drug-induced AVWS, discontinuation of the drug responsible is usually sufficient to reverse the hemostatic defect of AVWS. Unfortunately, in a few cases of AVWS the underlying disorder is not identified or is resistant to therapy. In these cases the best approach to stop bleeding episodes and/or to prevent bleeding during surgery must be found.

Therapeutic approaches used to stop bleeding in AVWS

Many different therapeutic approaches have been used in AVWS, including mainly desmopressin, factor VIII/VWF concentrates, high-dose immunoglobulins but also plasmapheresis, steroids and immunosuppressive drugs. No treatment can be effective in all AVWS cases: often, more than one

Table 3. Different therapeutic approaches in 186 cases with AVWS from the Registry.* Number (%) of patients who responded out of treated.

<table>
<thead>
<tr>
<th>Associated disorders</th>
<th>Case number (%)</th>
<th>Lymphoproliferative</th>
<th>Myeloproliferative</th>
<th>Neoplasia</th>
<th>Immunologic</th>
<th>Cardiovascular</th>
<th>Miscellaneous</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDAVP</td>
<td>26/59 (44)</td>
<td>3/14 (21)</td>
<td>3/4 (75)</td>
<td>1/3 (33)</td>
<td>3/30 (10)</td>
<td>2/9 (22)</td>
<td>38/119 (32)</td>
<td></td>
</tr>
<tr>
<td>FVIII/VWF concentrate</td>
<td>28/56 (50)</td>
<td>2/14 (14)</td>
<td>6/6 (100)</td>
<td>4/30 (13)</td>
<td>2/9 (22)</td>
<td>42/115 (37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.V. immunoglobulin</td>
<td>18/48 (37)</td>
<td>2/2 (100)</td>
<td>1/2 (50)</td>
<td>0/10 (0)</td>
<td>0/1 (0)</td>
<td>21/63 (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmapheresis</td>
<td>6/30 (20)</td>
<td>0/1 (0)</td>
<td>0/2 (19)</td>
<td>0/2</td>
<td>—</td>
<td>6/32 (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>10/31 (32)</td>
<td>0/1 (0)</td>
<td>2/26 (8)</td>
<td>0/6 (0)</td>
<td>12/63 (19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunosuppressive</td>
<td>17/47 (36)</td>
<td>5/14 (36)</td>
<td>1/2 (50)</td>
<td>—</td>
<td>0/3 (0)</td>
<td>23/66 (35)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* More than one approach is used in the same patient (modified from ref. #7).
therapeutic approach must be used to stop bleeding (Table 3). Despite many reports, there is only one study which investigate three of the most used therapeutic approaches — desmopressin, FVIII/VWF concentrates and high-dose immunoglobulins — in the same group of ten patients. These patients are characterized by an AVWS associated with monoclonal gamopathy of undetermined significance (MGUS) and their bleeding problems were managed by using one or more of the therapeutic approaches. As examples, the effects on BT and on FVIII/VWF activities including multimeric pattern are summarized in these patients with AVWS associated with MGUS according to the type (IgM-MGUS versus IgG-MGUS) of monoclonal paraproteins (Figures 2-7).

Desmopressin

Since, by definition, VWF is usually present in normal concentrations in cellular compartments of patients with AVWS, DDAVP can induce an appropriate release of normal and functional VWF and can restore normal levels of FVIII/VWF in plasma. DDAVP is not very expensive and does not carry any risks of blood-borne infections which could be particularly dangerous in patients with the underlying diseases associated with AVWS. The main problems of DDAVP in AVWS are related to the short half-life of FVIII/VWF, due to one of the mechanisms interfering with VWF survival in AVWS. DDAVP can shorten BT and increase plasma FVIII/VWF properties only transiently in AVWS with
Treatment of acquired von Willebrand’s syndrome

The DDAVP response pattern has been recently re-evaluated in ten additional cases affected by MGUS and results are very similar.\(^\text{8}\) Given the extreme heterogeneity of the mechanisms inducing AVWS, it is not surprising that the response to DDAVP can be quite variable from patient to patient even in cases with the same underlying disorder. This is why an infusion trial, with BT and FVIII/VWF activities measured before and following DDAVP administration, is indicated in every patient with a new diagnosis of AVWS. Desmopressin (DDAVP) was effective in only 32% of cases tested as shown in the registry.\(^\text{7}\) Apparently, DDAVP was more effective in AVWS associated with LPD (44%) than other underlying disorders but it is interesting to note that DDAVP was also effective in reducing bleeding in the other disorders associated with AVWS (Table 3). As an example, the BT with FVIII/VWF activities including multimeric pattern in patients with IgG-MGUS and IgM-MGUS before and after DDAVP are reported in Figures 2 and 5.

FVIII/VWF concentrates

Compared to DDAVP, plasma FVIII/VWF concentrates are more expensive and may carry some risks, though remote, of possible blood-borne infections. Also in case of FVIII/VWF concentrates, the half-life of the FVIII/VWF activities is shortened by one of the mechanisms causing AVWS. Therefore the efficacy of these concentrates must be proven every
time by serial measurements of FVIII/VWF activities following administration of the concentrates. FVIII/VWF concentrates were also used in many patients reported in the international registry with AVWS and they were effective in 37% of total AVWS cases. In the cases of solid tumors and LPD the FVIII/VWF concentrates were effective in, respectively, 100% and 50% of the patients who were treated with them (Table 3). As an example, the BT with the FVIII/VWF activities including multimers in patients with IgG-MGUS and IgM-MGUS before and after 40 U/kg of Haemate-P, one of the most used FVIII/VWF concentrates, are reported, respectively, in Figures 3 and 6.

High dose immunoglobulins

Much experience has been gathered in the treatment of AVWS with high dose immunoglobulins (IV-Ig) since the early experiences by Maciak. IV-Ig can be effective in AVWS associated with MGUS and in other underlying disorders characterized by inhibiting activities against VWF. It has been proven that two single daily IV-Ig infusions (short-term therapy) can induce a prompt and sustained increase of FVIII/VWF activities and shortening of the BT for at least 15 days in all IgG-MGUS patients but not in IgM-MGUS. Repeated doses of IV-Ig given every 15-21 days (long-term therapy) produced consistent responses in FVIII/VWF measurements and clinical remission of the bleeding diathesis in AVWS associated with IgG-MGUS. The mechanisms by which IV-Ig exert their action is not completely understood: one possibility is that they prevent the clearance of inhibitor-VWF complex from the circulation by blocking Fc-receptors.
From the data of the international registry, IV-Ig were effective in 33% of patients, especially in LPD (37%) and solid tumors (100%). As reported in the literature, the efficacy of IV-Ig seems to correlate very well with the presence of positive anti-FVIIa/VWF inhibitors.\(^\text{26}\) In the registry IV-Ig response was found in 75% of patients with LPD and solid tumors who were characterized by the presence of anti-VWF antibodies. As an example, the BT with the FVIII/VWF activities including multimers in patients with IgG-MGUS and IgM-MGUS before and after high-dose IV-Ig, are reported, respectively, in Figures 4 and 7.

Additional therapeutic approaches

Thirty-two patients, of whom 30 had associated LPD, were treated with plasmapheresis or extracorporeal immunoabsorption, but this approach was effective in only 6/30 of the LPD cases (Table 3). Corticosteroids were used in 63 cases and were effective in 12% of total cases and in 32% of LPD patients (Table 3). The apparently high response to immunosuppressive agents (35%), especially in LPD (36%), MPD (36%) and solid tumors (50%), is mainly related to the use of drugs (chemotherapy with steroids and other immunosuppressive agents) given to treat the underlying conditions associated with AVWS. This is not surprising because it is in perfect agreement with one of the goals of AVWS treatment, i.e. to treat the underlying disease whenever possible.

Recommendations

The recommendations for AVWS treatment are derived from those approved by the Scientific Standardization Committee on VWF of the International Society of Thrombosis and Hemostasis as already published.\(^\text{7}\) In the case of excessive bleeding, surgery or invasive procedures in a patient with definite AVWS the physicians must consider the proposed flow-chart for the management of AVWS shown in Table 4.

DDAVP is the first choice because AVWS patients show normal VWF in cellular compartments (endothelial cell and platelets) and, in the registry, this management was proven to be effective in 1/3 of the treated cases with AVWS (Table 3). Since the half-life of FVIII/VWF can vary from patient to patient, an infusion trial with DDAVP with BT, FVIIa:C and VWF:RCo measured before and 1, 2, 4 hours following DDAVP is recommended in every new case of AVWS to test the patient's response to this agent. During treatment, especially in the case of repeated DDAVP infusions, FVIII/VWF activities must be always measured before and after infusions to make sure that DDAVP is still effective. Only in the case of proven failure of DDAVP treatment, should other options be considered.

Plasma-derived FVIII/VWF concentrates are the second choice, because they have been proven to be effective in more than 1/3 of the AVWS patients tested in the registry (Table 3). Considering the high costs and the possible risks, albeit remote, of blood-borne infections, their use is recommended only in proven DDAVP-unresponsive cases. As for DDAVP, also in the case of concentrates, measurements of FVIII/VWF activities are required to adjust dosage and time of infusions. In the case of major surgery, an infusion trial can be justified to know the half-life of VWF in the patient and to select the appropriate dosage in advance. Dosages can vary according to the response from 50 to 100 U/kg or more. During treatment (especially in the case of repeated infusions), FVIII/VWF activities must always be measured before and after infusions.

Treatment with high-dose intravenous immunoglobulin is the third choice. Immunoglobulins must be used in specific cases such as patients with proven anti-FVIII/VWF inhibitors or those unresponsive to DDAVP and FVIII/VWF concentrates. FVIII/VWF activities must be measured before and once a day for 7-15 days following infusions.

Table 4. Flow chart for management of bleeding in AVWS.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Excessive bleeding, surgery or invasive procedures in a patient with AVWS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before treatment</td>
<td>Make sure of a correct diagnosis of AVWS. Try to identify patients with or without anti-FVIIa-VWF activities (inhibitors).</td>
</tr>
<tr>
<td>First choice</td>
<td>Desmopressin (DDAVP). When possible, an infusion trial is recommended. During treatment, measure FVIII/VWF activities always before and after infusions.</td>
</tr>
<tr>
<td>Second choice</td>
<td>Factor VIII/VWF concentrates. In case of surgery, an infusion trial can be justified. Dosage can vary according to the response from 50 to 100 U/kg or more. During treatment, measure FVIII/VWF activities before and after infusions.</td>
</tr>
<tr>
<td>Third choice</td>
<td>High-dose i.v. Ig (only in specific cases): patients with proven inhibitors or cases unresponsive to DDAVP or FVIII/VWF concentrates. Measure FVIII/VWF activities before and once a day for 7-15 days following infusions.</td>
</tr>
<tr>
<td>Additional options</td>
<td>Plasmapheresis and extracorporeal immunoabsorption. Steroids and immunosuppressive agents (long term therapy).</td>
</tr>
</tbody>
</table>

* Modified from ref. #6.
demonstrate efficacy. In other underlying disorders associated with AVWS without inhibitors, the positive effects of IV-Ig remain to be proven. Given the high costs of such treatment, IV-Ig must be reserved to AVWS cases with positive anti-FVIII/VWF inhibitors and/or must be tested in bleeding patients who were proven to be unresponsive to DDAVP and FVIII/VWF concentrates.

Plasmapheresis and extracorporeal immunoadsorption or steroids and immunosuppressive agents can be considered additional therapeutic approaches.

References

Haematologica is sponsored by educational grants from the following institutions:

- IRCCS Policlinico S. Matteo, Pavia, Italy
- University of Pavia, Italy
- José Carreras International Leukemia Foundation
Haemate® P

L’anello mancante nella malattia di von Willebrand